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We propose a dynamic model for granular flows. Starting from the equation of motion for a grain to-
gether with the equation of continuity, we derive a Langevin equation describing the time evolution of
the granular system. We show how the model displays scale invariance and reduces to several existing
models in appropriate limits. In particular, we also point out the possibility of different behaviors in

granular systems according to their sizes.
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I. INTRODUCTION

In studies of granular materials, one of the most excit-
ing challenges is to develop a sound model that can de-
scribe the complex dynamical behavior of granular parti-
cles. Granular particles flow like a liquid and fill any
shape. Yet an attempt to model its dynamics by equa-
tions of motion describing a pure fluid is likely to fail be-
cause granular particles also exhibit solidlike behavior,
enduring shear stress and supporting themselves with a
finite angle of repose. These peculiar features have given
rise to a number of recent investigations, both experimen-
tally [1-3] and theoretically [4-9]. In particular, the
idea of “‘self-organized criticality” introduced by Bak,
Tang, and Wiesenfeld [4] has motivated much interest in
the possibility of scale invariance in dynamical behavior
of granular piles [1-9] and earthquakes [10]. Subse-
quently, by considering various symmetries of the system,
Hwa and Kardar constructed a Langevin equation which
appears to describe surface fluctuations of a sandpile in
the hydrodynamic limit [5]. In this case, the scale invari-
ance of the system has been shown to be a consequence of
the conservation law and anisotropy [8].

In contrast with this theoretical prediction, experimen-
tal results of real sandpiles still remain unclear regarding
scale invariance, even suggesting that the appearance of
scale invariance is a finite-size effect [3]. Large sandpiles
simply do not exhibit scale invariance but rather appear
to oscillate between two fixed points [3,11]. We recognize
that most of the existing models [5-9] have been con-
structed largely via phenomenological arguments and
thus lack microscopic features which appear to be crucial
in displaying dynamical behavior peculiar to granular
systems.

The purpose of this paper is to propose a dynamic
model for granular flows. Starting from the equation of
motion for a grain together with the continuity equation,
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we derive a Langevin equation that describes the bulk
fluctuations of the system. In the absence of gravity,
granular flow is described by a relaxational dynamics:
When driven by the conservative noise, the system re-
laxes to the equilibrium state characterized by the Ising
Hamiltonian [6]. When driven by the nonconservative
noise, the system relaxes to the critical state character-
ized by the Gaussian Hamiltonian at its criticality. In
the presence of gravity, the proposed model predicts that
the nonlocal nature of the interactions resulting from
gravity can destroy the scale invariance even though the
system possesses anisotropy and obeys a conservation
law. This leads to the interesting possibility of different
behaviors in granular systems according to their sizes:
for large sandpiles, nonlocal nature is important and the
mass term appears in the Langevin equation, thus des-
troying scale invariance. In the absence of nonlinear and
nonlocal terms, this model is shown to reduce to the
diffusing void model [9]. It also reduces to the Hwa-
Kardar equation [5] in the appropriate limit, thus making
the nontrivial prediction that the surface fluctuations and
bulk fluctuations are of the same nature, a result suggest-
ed by numerical simulations of sandpile models [5].

II. LANGEVIN DYNAMICS

The conventional approach has been to start from the
continuity equation together with momentum conserva-
tion. However, there is little we can do in finding out the
relation between the stress and the strain tensor for
granular systems. The plasticity model has long been
used to remedy this deficiency. However, it does not de-
scribe even the most simple flow patterns of granular
flows. In this paper, we drastically depart from this con-
ventional approach and present a different one.

Consider the number density p(r,t)=3¥_,8(r—r,(?)),
where r,’s are the position of the grains and N is the total
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number of grains in the system. In the stationary state,
dr,/dt=v(r,), and one can easily derive the continuity
equation for p(r,t); 9,p(r,t)+V-(pv)=0. Consider now
the coarse-grained density n(r,t) defined as the total
number of grains in a box of size b% Then it is straight-
forward to show that n (r,¢) also satisfies the continuity
equation:

9 6,0+ j(r,)=0, (1)
ot

with j(r,t)=nv the current density. Now the motion of
a grain will be governed by the total force on it, which in
general consists of three parts: the applied force F in-
cluding the normal contact force and gravity, the fric-
tional force f, and the “random force” n which may re-
sult from, e.g., random shaking.

In the stationary state, the velocity of a grain does not
change in time, and we impose the balance condition:
F+ f+7=0. In principle, this condition gives the veloc-
ity v or the current density j=nv as the function of the
number density n(r,t), which, upon substituting in the
continuity equation, leads to the desired Langevin equa-
tion for the system. We now derive the general form for j
from the following microscopic consideration. First, the
normal force on the grain at r is exerted by its neighbor-
ing grains located in the direction opposite to the force,
and has the components F,=—a[n(r+X)—n(r—3%)],
where a is a constant measuring the strength of the force
and the space has been rescaled in units of the inter-
granular spacing. Thus in the long-wavelength limit, we
obtain the normal force F= —aVn. Next, the frictional
force, which is exerted by neighboring grains located in
the direction perpendicular to the force, has the direction
opposite to the velocity v. For small v, its magnitude is
expected to be proportional to that of v. Therefore, to
the lowest order, we write f,=—yv, [n(r+¥§)
+n(r—§)+n(r+2)+n(r—2)] or f=—4ynv in the
long-wavelength limit. The balance condition then leads
to the current density j=—a,Vn+en with a;=a/4y
and €=1/4y. Substituting it into the continuity equa-
tion, we derive the diffusion equation describing the ran-
dom walk [9]. Note that the friction law used above does
not take into account the threshold term necessary to
move the locked particle. In the absence of gravity, the
force exerted on the grain is only through normal contact
and if the net force vanishes, then the grain should not
move since the friction alone cannot cause the grain to do
so [16]. Such a model was recently proposed [9], where
particles move under the influence of gravity through a
vacancy motion and the locking as well as the momentum
transfer among particle has been ignored. In this case,
friction is due to the contact with grains and thus it
might just be proportional to the velocity. In this
respect, the random walk model of granular flows [9]
essentially corresponds to the linear limit of the model
proposed here. In spite of its simplicity, this model has
reproduced many of the unique features of granular flows
including the evolution of free surface and the stream
lines around an obstacle. Obviously, other higher-order
contributions to F and f will come from next-nearest
neighbors. Without going into detail, one may construct

the general form of j through the use of the symmetry of
the system [5]. At this point, it might be convenient to
define a new scalar field ¥(r,?)=2n(r,t)— A, where A is a
constant that measures the number of (fine-grained) parti-
cles in a (coarse-grained) grain [12]. We then extend the
range of i to the entire real axis, and write down the
Langevin equation in terms of :

X—a, v+ VD) + - BV~ e+

()

with suitably renormalized coupling constants. The noise
term { is related to the random force % via
§(r,t)=—(€e/2)V-q(r,t). In the presence of noise, the
diffusion equation has been studied with regard to the
possibility of scale invariance [8]. Its dynamics in general
depends in a crucial way on the nature of the noise &,
which is in turn related to the random force %: the first
one is the random force with no spatial correlations
(ni(r,t)n;(r',t")) =D8(r—r')8(z —1')8,;, for which the
system described by (2) relaxes to an equilibrium state
characterized by the Ising Hamiltonian,

FH= [ d’rlia?+ Lo’ + Lat + LB, (V) —hyl ,

where an external magnetic field & controls the average
value of ¥ or the number of grains. The cubic term can
be eliminated by a shift of ¢, resulting in a modification
of h; higher-order terms are irrelevant [13]. Thus the sys-
tem driven by the conservative noise eventually relaxes to
the stationary state, where correlations in general decay
exponentially in space although they decay algebraically
in time, implying the absence of scale invariance. In a
different context, such an Ising model has been also
proposed for the equilibrium description of a granular
system [6,14]. The second one is that character-
ized by algebraic correlations (#,(r,)n;(r',t"))
=(D /4m)|r—r'| 7'8(z —1')8;; which leads to the noncon-
servative  noise with no  spatial correlations
(&(r,0)é(r',t")) =D8(r—r')8(¢t —¢t') and the correspond-
ing Langevin equation again gives the stationary state de-
scribed by the Gaussian Hamiltonian [13] at its criticali-
ty, H= f d*ria@,(V¢)%. Consequently, correlations decay
algebraically both in space and in time with Gaussian ex-
ponents, leading to generic scale invariance [15].

II1. EFFECTS OF GRAVITY

Gravity introduces anisotropy in the system and affects
the dynamics in a significant way. To be specific, let us
first consider the normal force in the presence of gravity
g=—gZ. The downward normal force acting on a par-
ticular grain comes from the weight of those grains above
it. This downward normal force together with its own
gravitational force will be balanced with the upward nor-
mal force exerted by the neighboring grain just below if it
is present. We now derive the z component of the force
acting on the grain at r. As shown in Fig. 1, the force
acting on the grain at the center (black) consists of two
parts: normal force F, acting from below and the force
from above due to the piles of grains, F,. Now the total
force F, acting on the grain at the center is zero if there is
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FIG. 1. (a) Forces acting on the grain at the center (black) lo-

cated at position r. It is surrounded by neighbor grains located:

at r+2 and r—2 along the z axis and r+% and r—% along the x
axis and r+§ and r—§ along the y axis, where X, §, and Z are
unit vectors along x, y, and z axes, respectively. Total force act-
ing along the z axis has two components; F, is the force due to
the piles above it, and F, is the normal force acting from below.
(c) If a grain at r—2 is missing, then F, =0 in the order n. (d)
However, it might not be zero in the order n2. As shown in the
figure, the normal force can be through next-nearest neighbors,
which is order n2.

a grain that supports upward from below. In this case,
F, and F, exactly balance out. If not, then the total
force acting on the center grain will be just the total mass
above it multiplied by the gravitational constant g. Thus
we may write

F,=—mg[l—n(r—2)]
X[1+n(r+Z)+n(r+2Z)n(r+22)
+n(r+2Z)n(r+2Z2)n(r+32)+ --- ], (3)

L—z
F.=—a

X X

p=1 p=1

=—a,[n(r+X)—n(r—X)]2(n(r+k2))—a,[n(r+X)+n(r+3%)]=

Zn on
" dx

dx? =

z

where we have ignored the higher-order terms. Note that
the first term and the second term in Eq. 7(a) are the
forces acting from the right and left, respectively. The
physical meaning of it is as follows: first, the density
terms, n(r+%) and n(r—%), are due to the fact that the
contact is possible only when the nearest-neighbor site is
occupied; second, the total contact force acting from the
left (or right) must be proportional to the total mass act-
ing on the nearest-neighbor grains.
Similarly, we find, for the y component,

L—z
n(r+%) 3 n(r+X+p2)—n(r—%) I n(r—%+p2)

where Z is a unit vector along the z axis. Let us now
coarse grain the system, and consider the hydrodynamic
limit. Then we may expand the density such that

n(r—'i)zn(r)—ép—-F (4)
oz

and set

S,(n)=n(r+2)+n(r+2)n(r+22)
+n(r+Z)n(r+2Z)n(r+32)+ - - - . (5)

The z component of the total force acting on the grain,
F,, becomes

L—z
F,=—qa,[1—n(r—2)] |1+ I n(r+p2)
p=1
on
~—a, |[l—n+— |[1+2,(n)], (6)
dz

where a, =mg is the weight of a particle, L is the (linear)
size of the system. We also used the fact that upon
coarse graining, 2,n zz{;; Zn (r+pZ). We next consider
the horizontal component F,, which has again two com-
ponents, the contact force from the left and right grains.
But in this case, considering the random nature of the
grain packing, we note that one must multiply the total
mass acting on the right or left grains. So, we find for the
x component of the normal force,

(7a)

on (7b)

(7c)

(7d)

Fyz—ay%;-Ez(n). (8)

If the packings of the grains are random, then a, and a,
are of the same order. Thus we set a, ~a,=1a, with
a,~a,. These expressions can be combined to give the
final expression for the force acting on a grain, which in-

creases with the depth of the grain:

F=—[a,Vn+a,0,nZ+a,(1—n)z]=Z,(n), 9)
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with 9,=98/9z and V,=%d, +§9,. If we consider the
contribution coming from the next-nearest neighbors,
then the second term in Eq. (3) is modified:

F,=—mg[l—n(r—2)—n(r+x—2)n(r—22)
—n(r—X—2Z)n(r—22)— -+ ]
X[n(r+2Z)+n(r+2)n(r+22)

+n(r+Z)n(r+22)n(r+32)+ -+ ],

which introduces a term, second order in n, so that Eq.
(9) becomes

F=—[a,V,n +a,d,n2+a,(1—n —n?2]2,(n). (10

Our next task is to find the frictional force f. The most
commonly used form for the frictional force [16] is

f=—(a +bv?)y. (11)

A. Small system

For a small system, the frictional force is proportional
to the normal force and thus we expect

f=—3,(n)a+bv?)V. (12)

From the balance equation F,,+ f +7=0 we find

(a +bv2)6:(zz(n))h1[Fext+n]EFEW ’

from which we obtain the expression for the flux j,

j=nv=mV¥=n[(F—a)/b]"®
n a
S E—
[b(F_a)]l/Z F
with F =|F]|.
Now, let
a(n)=ag+an+an’+ -+,

b(n)=by+bn +byn2+ --- .

Recall now the expression for F [Eq. (10)] and the
definition of the density n =(A+v)/2. Then,

a(P)=aytai()+---,
b(p)=bo+bi(P)+ - -,
and

A
F=|Fl=a, [1-2
|F|=a, |1 5

[1+@,v—)+0 ()] .

Thus we find

equation (1), we arrive at the desired Langevin equation:

W V.jma,Vita,u—20,)HE,  (14)
where the linear term 9,9 has been omitted since it can
be removed by the Galilean transformation z-—z —uvt

with suitable v [17]. The noise term in the above equation

Note that in the absence of the nonlinear term ? and

i= (A+1)/2
{(bo+biy+ - a,(1—A/2)[1+ (3, ¢—P)]—(ap+aiy+ - - )}
apgtaijp+ .-
X |1— 0 11/} F
a,(1=A/2)[1+d,—¢)+ - -+ ]
=CF,
[
with
c= A -
2{byla,(1—A/2)—a}]} ot
X |1 il =
. (1—A/2) =const .
u dert might be set to zero.
€nce we derive
ji=nav=—a,V,Yv—a,0,yZ+ A Y2+ 1072 , (13)

where all the coupling constants have been renormalized
and rescaled with appropriate scale factors. The constant
term as well as higher-order terms except the square term
are irrelevant and have been neglected. Interestingly, (13)
predicts the well-known fact that the velocity v of a grain
does not increase with the depth of the granular system.
This clearly originates from the fact that the frictional
force as well as the normal force increases with depth,
and is in sharp contrast with a fluid system, where the
flow velocity increases with depth. Putting Eq. (13) to-
gether with the random force 7 back into the continuity

noise term § and with a,=0, Eq. (14) is precisely the
governing equation of the diffusing void model if we put
back the 9,y term. We thus have derived the diffusing
void model [9] from microscopic consideration. The pre-
cise characteristic of the noise term ¢ included in (14)
cannot be derived from that of the random force 5 since
the transfer rule of a random force under gravity is un-
clear. Nevertheless, for the generic random force, it is
reasonable to assume that the noise correlations are given
by

(Er,DE(r, 1)) =[D, +D,V?+ - - - 18(r—r')8(z —1') .
(15)
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Remarkably, Eq. (14) is precisely the Langevin equation
assumed to describe the sandpile problem with (r,?)
describing the height profile of the sandpile [5]. That
equation has been studied in detail to reveal scale invari-
ance. It is of interest to note that in the sandpile problem
Y(r,t) is defined on the surface and consequently, the di-
mension of the problem is d —1 for the d-dimensional
sandpile. Here, on the other hand, ¥(r,?) represents the
number density and is defined not only on the surface but
also throughout the entire system, making the dimension
d. This strongly suggests that the surface fluctuations
and bulk fluctuations in a granular system are of the same
nature, as also indicated by numerical simulations of
Hwa and Kardar [5].

B. Large system

For a large system, the normal force is large and thus
we expect that the friction presumably tends to saturate
and eventually becomes independent of the normal force
(Fig. 2). In this fluid regime, the friction has the form

f=—(a+bv27¥,

while the normal force still increases with depth. From
the balance equation, we find

(a +bv*V=F, +n=F=F9,
where

F=—[aq,V,n +a,d,nZ+a,(1—n)Z]=,(n)
and

F=|F|=32,(n)a,(1—=A/2)[1+3,p—¢)+ - ].
Hence we find the different expression for j,

A
{2bgla,(1—A/2)2,(n)—ao}'/?

j:

’
aop

=iz as,m [

Since n =(A+1)/2, the summation at the end of the
above equation becomes

L _ (L, Aty _ AL —2) L
Sm~ [Tdzn= [dz S E =S [Tz y
=i+ [Tazys2. (6
f 4
>

FIG. 2. Friction force f as a function of normal force F.

Choose 2A>> f dz ¢ and then expand ¥ in the hydro-

dynamic limit, which leads to the following current den-
sity:

i=—aViYy—a,d,9Z2+r Y2+ - -
—(potpp+ -2 [ pdz, (17)

where p... are appropriately scaled constants. Note that
for a sufficiently large system, =,(n)>>a and in this lim-
it,

A F
[2b4a,(1—A/2)2,(n)]'?
A
[2bga,(1—A/2)]?

X[a,Vin+a,d,n2+a,(1—n)Z][3,(n)]"?.

j=nv=

In the fluid regime, n =const. Hence we have
5,(m)=["dzn~L —z=h (depth).
¥4

Therefore the current density |j|~|v|~V'h and we re-
cover the well-known result v =V'h, i.e., the velocity is
proportional to the square root of the height for the fluid
regime. Putting Eq. (17) back into the continuity equation
(1), we obtain the corresponding Langevin equation,
which now contains a mass term, — pgi:

%“ﬁi= g+, Vit a, R — 3P+ (18)

The mass term destroys scale invariance and leads to ex-
ponential decay with the characteristic time u, !. There-
fore the system does not display scale invariance in spite
of anisotropy and the apparent conservation law in the
starting equation of continuity [Eq. (1)]. This seems to
provide a natural explanation as to the key difference be-
tween a granular system and a fluid system in spite of
their many similarities: The former can display scale in-
variance while there is no scale invariance in the latter.
Of particular interest here is the possibility of different
behaviors in granular systems of different sizes. In a
sufficiently small granular system, the normal force act-
ing on the grain even at the bottom will be small, leading
to the friction proportional to the normal force. Then
the system is described by Eq. (14), and exhibits scale in-
variance. In a large granular system, on the other hand,
the friction acting on most of the grains will saturate due
to the large normal force [11]. Consequently, the system
is in the fluid regime and described by Eq. (18), leading to
exponential relaxation. This may provide some clue to
the striking difference according to their sizes which has
been indeed observed in experiments of sandpiles [3].

In summary, we have derived a nonlinear evolution
equation for the granular flows from microscopic con-
siderations, which reduces to the diffusing void model [9]
and the nonlinear Langevin equation derived by Hwa and
Kardar [5] and the Ising model description of Mehta and
Edwards [6]. The model we have derived, however, is not
complete and may require further modifications along the
following direction. First, the evolution equation has
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been derived in an infinite system with no walls present.
It is certain that the walls take the load and might com-
plicate the dynamics of the granular system. In fluids,
the walls provide boundary conditions to the second-
order Navier-Stokes equation. One may impose similar
boundary conditions to the evolution equation derived in
this paper, say, the reflecting boundary condition [9].
However, the detailed motion of the grains near the
boundary might be complex and needs exploration from a
microscopic point of view such as the molecular-
dynamics simulations [18]. Note that our equation does
not contain the temperature field for the obvious reason
that thermal energy is too small to trigger the motion in
the granular system [19]. Second, the most serious ques-
tion concerns the stress distribution of the granular sys-
tems [20], for which case the coarse-grained description
might not be so useful. Nevertheless, we anticipate that
the nonlinear evolution equations derived in this paper

might provide quite useful information regarding the
complex dynamics displayed by granular systems.
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